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The one-particle average consistent with the structure of the revised Enskog 
theory is introduced. Symmetry properties of the linear kinetic operators reflect- 
ing those of the N-particle pseudo-Liouville operators are derived, implying a 
recently proved symmetry of kinetic expressions for equilibrium time correlation 
functions. 
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In a recent paper by Cohen and de Schepper ~1) (hereafter referred to as 
CS), symmetry properties of approximate kinetic expressions for equi- 
librium correlation functions of local physical quantities in a hard-sphere 
fluid were considered. Enskog theory expressions for these correlation func- 
tions were proved to be symmetric with respect to the local quantities. In 
this connection a new symmetric kinetic operator, which manifestly yields 
the desired relation, was introduced. 

The purpose of this paper is to point out a different formulation of the 
symmetry properties of Enskog theory expressions for correlation func- 
tions. The traditional one-particle average used in CS, which traces back to 
the low-density Boltzmann kinetic theory, is replaced here by a new one. 
Consistently with the revised Enskog theory, the new average gives exact 
results for the static correlations. Then the structure analogous to that on 
the N-particle level is found on the level of the revised Enskog theory. In 
particular, one can prove that the linear Enskog operators for forward and 
backward evolution are conjugate with each other with respect to the 
scalar product corresponding to the one-particle average. The CS result 
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appears then in a very natural way without introducing any new symmetric 
kinetic operator. This result can be also easily generalized to the case of 
hard-sphere mixtures. 

I restrict myself to the autocorrelation function of time-displaced # 
space densities in a fluid at thermal equilibrium: 

F(x; tlx'; O)= (p(x'; 1 "N) p(x; I'tN) ) 

= (p(X'; 1 "N) exp(tL) p(x; f iN)) (1) 

Here p(x; F N) = ~U= 1 I ~ ( X  - -  Xi( t) ) denotes the microscopic # space density 
at point x --- (r, v), F u - (Xl(t),..., XN(t)) represents the microscopic state of 
the fluid at time t with Xi(t)-(Ri(t) ,Vi(t))  the phase of particle i, 
i = 1  ..... N, and /'N=/-'ff= o. The brackets in Eq. (1) denote a canonical 
equilibrium ensemble average at temperature T and number density 
n = N/V, with N the number of particles and V the volume of the fluid: 

( . . . )  = f de  N poq(e,~)... (2) 

dFU=dX1 . . .dXu. Note that by convention the equilibrium ensemble 
density peq stands on the left-hand side of the averaged quantity. Finally, 
L in Eq. (1) is the N-particle Liouville operator of the system. 

From the # space density autocorrelation function one can obtain 
correlation functions of all local physical quantities which are sums over 
one-particle contributions, in particular, the functions considered in CS. 

For the continuous interparticle interactions the antisymmetry of the 
Liouville operator 

f dY N a(F N) Lb(F N) = _ f dFN b(F N) La(F N) (3) 

(a, b are any two phase functions) and commutation of the equilibrium 
ensemble density peq with the streaming operator exp(tL) lead to the 
relation 

F(x; t lx';O)=F(x'; - t l x ;  O) (4) 

This equation implies that the correlations between the # space density at 
point x and time t and the density at x' and t = 0 are the same as those 
between the density at x' and - t  and the density at x and t = O. Then the 
equivalence of the space and time reflection yields 

F(r, v; t lr ' ,  v'; 0 ) =  F ( - r ' ,  v'; t[ - r ,  v; 0) (5) 
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Equation (5) is equivalent to the symmetry relation considered in CS [see 
Eq. (2.2) there]. 

The singularity of the hard-sphere interaction makes the problem a 
little more difficult: in Eq. (1) one should use different pseudo-Liouville 
operators (2'3) L+ and L for forward and backward evolution, respectively 
(t = 0 is always taken as an initial moment): 

~(p(x';FN)exp(tL+)p(x;FN)), t > 0  
F(x;tlx';O)=~(p(x';FU)exp(tL_)p(x;FN)), t < 0  (6) 

The pseudo-Liouville operators L_+_ are given by 

N ~ N 

L+ = ~ Vi" + ~ T+(ij) (7) 
-- i = l  ~ / / - -  -- i > j = l  

with binary collision operators (2'3) 

T+_(ij')=~r2 f d~lVa'~lO(~V~'@)O(Ru--a@)[b~(ij)-l] (8) 

Here ~ is a unit vector defining the geometry of the binary collision 
between the hard spheres i and j with diameter a, O(x) is the Heaviside step 
function, Vo.= V i - u  and Ra= R i - R j .  The operator b~(o') replaces the 
velocities Vi and Vj by the velocities V; and Vj resulting from the binary 
collision. 

The operators L_+ are not related by a transposition [compare 
Eq. (3)] and the pseudo-streaming operators do not commute with the 
hard-sphere equilibrium ensemble densityJ 2'3/ However, one can obtain the 
following relation2: 

(a(r  N) L + b(FN) ) = - (b(r  N) L_a(FU) ) (9) 

With the use of this equation one finds for t > 0 

F(x; t[ x ' ; 0 ) =  (p(x'; F N) exp(tL + ) p(x; F N) ) 

= (p(x; FN)exp(-tL_)p(x'; FN)) = F(x'; -- t lx;  0) (10) 

The space reflection changes - L _  into L+ and the desired relation (5) 
follows. 

2 Usually in intermediate stages one introduces so-called barred psuedo-Liouville operators 
L_ v_ which are related to L+ by a transpositionJ z3) 
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Now consider approximate expressions for the autocorrelation func- 
tion on the revised Enskog kinetic theory level. Here it is convenient to 
take the thermodynamic limit and to pass to the autocorrelation function 
of # space density fluctuations. Usually one starts from the nonlinear 
revised Enskog equation (4) for the one-particle distribution function f ,  

~ + v l "  f(xl; t) 

= f  dx2 T_(12) f (x l ;  t)f(x2; t) g(r 1, r21 n(t)) (11) 

In Eq. (11), g is the pair distribution function calculated as if the fluid was 
in a nonuniform equilibrium state corresponding to the momentary density 
field n(r;t)=~dvf(r,v;t) and T is one of two barred collision 
operators. (2'3) They are given by 

~_v_(ij)=aZfd~ ]vu'~ ] O(+_vo.~){6(r~-~)bn(ij')-6(rij+~r~)} (12) 

Then, proceeding in the standard way, (1'5) one obtains the following result: 
time dependence of the autocorrelation function is determined by the 
linearized Enskog equation and, as the static correlations are properly 
included in the theory, for t = 0 the exact expression is taken: 

FE(x; tlx'; O)=exp[--tLE (x)] FE(xlx ') (13) 

FE(xlx ') =-- FE(x; 0 [ X'0) 

= n~beq(v) 6(x -  x') + n2~beq(v) ~beq(v ') heq(lr-  r'l) (14) 

Here ~b "q and h eq = g e q  1 denote the equilibrium Maxwell velocity dis- 
tribution and the equilibrium pair correlation function, respectively, and 
the inhomogeneous linear Enskog operator (~'4)/7, E _ is given by 

8 8 
f dr2[c~q(r12)-xO(r12 - 1)] L ~_ (xl)  = vl "?-~r ~ - nCeq(vl )v' " ~  

• T_(12)(1 + e12) r  (15) 

where )~ = geq(o- + ), c eq is the Ornstein-Zernicke direct correlation function, 
and the permutation operator Pl2 interchanges x~ and x2. 

However, in this way one obtains time dependence of the auto- 
correlation function for t > 0  only. For t < 0  one should start from the 
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backward Enskog equation, i.e., from Eq. (11) with T replaced by - T + .  
In this case the standard procedure gives 

FZ(x; t[ x'; 0) = exp[ - tEE+ (x)] FE(x[x ') (16) 

--E where the linear Enskog operator L+ is given by Eq. (15) with T_ 
replaced by - T+. 

I now show how to cast relations (13) and (16) in a scheme corre- 
sponding to that on the N-particle level. First, one should introduce a one- 
particle (kinetic) average, which, consistently with the revised Enskog 
theory, gives exact results for the static correlations of the local physical 
quantities: 

(a(X1)b(X2))I=f dXldX2FE(XIIX2)a(X1)b(X2) (17) 

Here a and b are any functions on the /~ space. Having the one-particle 
average, one can define the corresponding scalar product: 

( a l b ) l  = (a(Xx) b(X2))l (18) 

The physical interpretation of the scalar product is clear. In particular, the 
space of functions with finite norm corresponds to the class of local physi- 
cal quantities with finite static correlations. It should be noted here that the 
scalar product (18) is equivalent to a scalar product generated by a 
physically motivated norm in the linear vector space of solutions of the 
linearized Enskog equation. (6) 

With the help of the one-particle average Enskog theory, expressions 
for the autocorrelation function can be rewritten in the following way (for 
t > 0 see CS; a calculation for t < 0 is almost the same): 

gZ(x;tlx,;O)=f(pl(x';X1)exp[tL~+(X2)]pl(x;X2))l, t > 0  (19) 
{(pl(x';X1)exp[tLE_(x2)]pl(X;X2))l, t < 0  

Here pl(x; X)= 6(x- X) and the inhomogeneous linear Enskog operators 
L~ are given by 

0 
LE+(XI) ~-V 1 . ~ 1 1 -  F/f dR 3 [ c e q ( R 1 3 ) - - z O ( R 1 3  - 1)'] 

• f av3  ~ e + .z  f ax3 cq(v3) r+ (13)(1 + e,3) OR3 13 - 

(20) 
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By a straightforward calculation one can prove that the relation (9) is 
retained on the Enskog theory level, 

(a(X1)Lz+(X2)b(X2))I= -(b(X1)LE_(X2)a(X2))I (21) 

So, the operators LE+ and - L  ~ _ are conjugate to each other with respect 
to the scalar product (18). Equation (21) makes it possible to relate 
Enskog theory expressions for the autocorrelation function for t > 0 and 
t < 0. In fact, one recovers the analogue of relation (10), 

FE(x; t l x' ; O) = (pa(x' ; Xz) exp[tLE+ (X2)] p l(x; X2) ) l  

= (p l (x ;  XI)exp[-tLE_(X2)] pl(x'; X2))~ 

= FE(x'; --tlx; O) (22) 

(note that here t >  0). Now one can easily obtain the CS result. It is suf- 
ficient to note that also on the Enskog theory level the space reflection 
changes operators for backward evolution into operators for forward 
evolution: - -L  E _ is changed into LZ+. So, with the use of Eq. (22) one gets 

FE(r, V; t l r', v'; 0) = FE( --r', v'; t I --r, v; 0) (23) 

The generalization of the outlined structure to hard-sphere mixtures is 
straightforward. For lack of space I give only the final result: the Enskog 
theory expression F ~  for the autocorrelation function of fluctuations of the 
# space densities of species e and fl is symmetric in the following sense: 

F~a(r, v; t i t ' ,  v'; 0 ) =  Fff~(- r', v'; tl - r ,  v; 0) (24) 

I end with three remarks. 

1. The one-particle average and the corresponding scalar product 
advantageously replace the traditional ones, which proved very useful in 
the low-density Boltzmann kinetic theory considerations (ref. 1; ref. 5, 
Chapter V). The linear Enskog operators appear in a very natural way. 
Their mutual relations correspond to those between the N-particle pseudo- 
Liouville operators. 

2. The "replacement rule" which makes it possible to obtain Enskog 
theory expressions for the time correlation functions now takes a very 
simple form. Following CS, I consider here correlations between local 
quantities Y'.N= 1 a(Vl)cS(r-- Ri) and zN=~ b ( V j ) 6 ( r ' - R j ) .  With the use of 
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the representation (19) of the autocorrelation function one obtains the 
following rule (for a comparison see Table I in CS): 

(j~l b(u165 ) i = l  
(b(Vl) 6 ( r ' -  Rx) exp[tL~(X2)] a(V2) 6(r - R2))1 (25) 

Note that in relation (25) I pass from correlations of the local quantities 
on the N-particle level to the correlations of their fluctuations on the 
kinetic theory level. 

3. Finally, I indicate consequences of the outlined structure for the 
Fourier representation of the autocorrelation function. The Fourier 
transform can be written with the help of a k-dependent average (or a 
corresponding scalar product in the space of velocity functions) and 
k-dependent Enskog operators L~(k, V). A straightforward calculation 
shows that the operators L~(k, V) are symmetric (self-adjoint) with respect 
to the scalar product. It is possible that this fact will facilitate the analysis 
of the low-k and long-time (hydrodynamic) behavior of the correlation 
functions. 
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